Tuesday, 17 August 2021

DAUR BIOGEOKIMIA & PERUBAHAN EKOSISTEM

DAUR BIGEOKIMIA
Daur biogeokimia adalah siklus yang melibatkan senyawa kimia yang berpindah tempat melalui organisme sebagai perantara kemudian senyawa ini kembali ke lingkungan fisik. Pembangun tubuh organisme adalah materi yang tersusun dari unsur-unsur kimia. Unsur-unsur yang ada di alam ini tidak mungkin habis karena mengalami daur ulang (siklus zat). Beberapa siklus unsur atau zat kimia yang penting antara lain siklus air, karbon, nitrogen, fosfor dan belerang. 

a. Siklus Air / Daur Hidrologi
Tahapan siklus air dibedakan menjadi dua dan berlangsung sebagai berikut: 
  1. Siklus air pendek yaitu air laut menguap, uap air di udara dingin mengalami kondensasi menjadi titik-titik air dan jatuh sebagai hujan, selanjutnya kembali ke laut. 
  2. Siklus air panjang yaitu uap air yang berasal dan berbagai proses penguapan, jatuh sebagai hujan di daratan kemudian melalui sungai atau air tanah kembali ke laut.
Daur Hidrologi
Sumber : puguhdraharjo.files.wordpress.co


b. Siklus Karbon 
Tahapan siklus Karbon berlangsung sebagai berikut: 
  1. Karbon di udara dalam bentuk CO2 dan dapat terlarut dalam air.  
  2. Pada tumbuhan darat maupun fitoplankton di dalam air CO2 diubah menjadi karbohidrat melalui proses fotosintesis. Dalam fotosintesis dihasilkan pula O2 yang dilepas ke udara. 
  3. Karbohidrat digunakan oleh konsumen untuk mendapatkan energi. Konsumen juga melakukan respirasi yang menghasilkan CO2 ke udara. 
  4. Penguralan oleh bakteri yang berjalan lambat dapat mengakibatkan penumpukan karbon bentuk batu bara dan minyak bumi.
Siklus Karbon
Sumber : york.conroeisd.net


c. Siklus Nitrogen 
Tahapan siklus nitrogen berlangsung sebagai berikut. 
  1. Atmosfer mengandung 80% nitrogen bebas (N2) tumbuhan dapat menyerap nitrogen dalam bentuk nitrat (NO3). 
  2. Beberapa bakteri pada bintil akar Leguminosa dan beberapa ganggang dapat memfiksasi N2 dari udara. 
  3. Halilintar juga menghasilkan bentuk senyawa N2 dan O. Senyawa tersebut terbawa air hujan berupa nitrat dan nitrit. 
  4. Mikroorganisme mengurai bangkai dan kotoran menjadi ammonium. 
  5. Bakteri denitrifikasi dalam tanah mengural nitnat menjadi N bebas ke udara. 
Siklus Nitrogen
Sumber : bioh.wikispaces.com


d. Siklus Fosfor 
Fungsi fosfor bagi makhluk hidup, antara lain fosfor dalam bentuk adenosin trifosta (ATP) merupakan bahan bakar (energi) bagi makhluk hidup.
Cadangan fosfat yang dapat larut, dapat digunakan langsung sebagai zat hara primer dalam sintesis protein oleh tumbuhan. Melalui rantai makanan fosfat dapat beralih ke tingkat tropik yang lebih tinggi. Jika organisme mati, fosfor dikembalikan ke tanah melalui proses penguraian. Kelebihan fosfat yang diekskresikan burung dan ikan dalam tinjanya juga mengembalikan fosfor ke lingkungan. Guano (doposit kotoran burung) juga merupakan akumulasi fosfor yang dikembalikan ke daratan. 
Siklus Fosfor
Sumber : eochemistry.wikispaces.com


e. Siklus Belerang/Sulfur 
Sulfur terdapat dalam bentuk sulfat anorganik. Sulfur direduksi oleh bakteri menjadi sulfida dan kadang-kadang terdapat dalam bentuk sulfur dioksida atau hidrogen sulfida. Hidrogen sulfida ini sering kali bersifat mematikan makhluk hidup di perairan, pada umumnya dihasilkan dari penguraian bahan organik yang mati. lon sulfat kemudian diserap tumbuhan dan diubah menjadi protein. Jika jaringan tumbuhan atau hewan mati akan mengalami proses penguraian. 
Beberapa jenis bakteri dapat mengoksidasi hidrogen sulfida menjadi sulfat kembali. Besi (Fe) dalam sedimen bereaksi dengan sulfida membentuk ferosulfida (FeS) yang mengendap.
Siklus Sulfur
Sumber : biosmadaj.blogspot.com


PERUBAHAN EKOSISTEM
Ekosistem adalah suatu sistem yang tidak statis, namun selalu dinamis yang mengalami perubahan struktur maupun fungsi. Perubahan ini mungkin hanya fluktuasi setempat yang tidak berarti, tetapi mungkin juga cukup besar sehingga dapat mengubah stabilitas hubungan suatu ekosistem. Perubahan ekosistem disebabkan oIeh perkembangan secara alami (suksesi) dan perubahan faktor luar.

a. Perkembangan secara alami (suksesi)
Proses perubahan dalam komunitas yang berlangsung menuju ke satu arah secara teratur disebut suksesi. Suksesi terjadi akibat dari perubahan lingkungan fisik dalam komunitas. Proses suksesi berakhir dengan sebuah komunitas atau ekosistem klimaks. Dikatakan klimaks karena ekosistem tersebut sudah stabil atau tidak akan berubah lagi. 
1) Suksesi Primer 
Contoh klasik untuk menggambarkan peristiwa suksesi primer adalah kejadian di gunung Krakatau, Jawa Barat. Pada tahun 1883 Gunung Krakatau meletus, semua kehidupan di gunung tersebut musnah. Seratus tahun kemudian ternyata di tempat tersebut sudah terbentuk hutan kembali.
Gambar Skema Proses Suksesi Primer
Sumber : Nuraini, R., dkk. 2015


Gambar Suksesi Primer
Sumber : Modul Guru Pembelajar


Mula-mula yang berkoloni adalah sejenis lumut kerak (lichen) dan beberapa jenis lumut tertentu. Asam-asam yang dieksresi oleh Lichen itu menghancurkan substrat batuan dan menyediakan sedikit tanah. Partikel tanah tambahan terbentuk karena penghancuran oleh iklim dan terbawa angin. penghancuran dan pembusukan terhadap lichen dapat menambahkan sedikit humus, sehingga lumut lain menetap. Setiap musim terdapat pertumbuhan baru yang lama membusuk (menyediakan humus). Tidak lama kemudian tersedia cukup tanah untuk paku-pakuan dan kemudian tumbuh rerumputan, kemudian semak (perdu). Keadaan ini menyediakan kondisi pertumbuhan yang amat baik untuk biji-biji tumbuhan tinggi (pohon). 
Biji, spora dan benih dalam bentuk lain datang dari luar dan sampai ke substrat baru dibawa oleh angin, air atau hewan. Tumbuhan atau organisme lain yang mampu menghuni untuk pertama kali disebut tumbuhan pelopor (vegetasi perintis). Disebut vegetasi perintis karena organisme tersebut mampu membuka lahan untuk hidupnya organisme lain. Suksesi yang terjadi pada suatu lahan yang rusak total ( tidak ada organisme yang hidup) disebut suksesi primer. 
2) Suksesi sekunder 
Suksesi sekunder terjadi jika suatu komunitas atau ekosistem alami terganggu, baik secara alami maupun buatan, dan gangguan tersebut tidak merusak total ekosistem tersebut. Banjir, kebakaran, angin kencang, gelombang laut, dan penebangan hutan merupakan contoh-contoh gangguan tersebut. 

b. Perubahan karena faktor luar. 
Ekosistem dapat berubah karena berbagai factor luar biasanya akibat ulah manusia. Contohnya Perubahan iklim di suatu ekosistem disebabkan oleh faktor manusia, terutama yang berkaitan dengan pemakaian bahan bakar fosil dan penyalahgunaan lahan.
Gambar Aktifitas manusia penyebab perubahan ekosistem 
Sumber: mikirbae.com 


Tuesday, 3 August 2021

PIRAMIDA EKOLOGI DAN PRODUKTIFITAS EKOSISTEM

PIRAMIDA EKOLOGI 

Hubungan organisme pada tingkat trofik ekosistem digambarkan dalam bentuk piramida. Semakin ke atas bentuk piramida semakin mengecil. Inilah yang disebut dengan piramida ekologi. Piramida ekologi adalah piramida abstrak yang menunjukkan hubungan struktur trofik dan fungsi trofik komponen-komponen biotik ekosistem. Berikut contoh gambar piramida ekologi. 

Di dalam piramida ekologi produsen (tingkat trofik I) selalu berada di bagian dasar piramida. Konsumen primer (tingkat trofik II) berada tepat di atas produsen dan konsumen sekunder (tingkat trofik III) berada di bagian atas konsumen primer. Anda bisa amati bahwa semakin tinggi tingkat trofik suatu organisme semakin sedikit proporsinya di lingkungan.

Piramida ekologi berdasarkan fungsinya dibedakan menjadi 3, yaitu piramida jumlah, piramida biomassa, dan piramida energi. Masing-masing tipe memiliki kelemahan dan kelebihan dalam menggambarkan hubungan antara struktur dan fungsi trofiknya.

a. Piramida Jumlah 

Tipe ini menunjukkan jumlah relatif organisme pada suatu area dengan melihat hubungan antara predator dan mangsanya. Pelopor teori ini adalah Charles Elton (ahli ekologi Inggris) pada abad ke 20. Jumlah organisme dihitung dalam satuan luas area tertentu. Di dalam piramida jumlah semakin tinggi tingkat trofik organisme semakin sedikit jumlahnya di lingkungan.

b. Piramida Biomassa 

Biomassa adalah taksiran massa organisme (biomassa) tiap satuan luas yang mewakili tiap tingkat trofik pada waktu tertentu Massa kering tiap individu dalam suatu ekosistem ditimbang dan dicatat. Ukuran yang digunakan biasanya menggunakan gram (massa kering organisme) per satuan luas (gr/m2 atau kg/ha). Piramida biomassa dibuat berdasarkan massa total populasi organisme pada suatu waktu. Cara ini dianggap lebih baik dalam menggambarkan hubungan tingkat trofik komponen biotik daripada piramida jumlah.


Piramida biomassa dibedakan menjadi dua, yaitu :
1) Piramida Biomassa Tegak; menggambarkan massa gabungan semua produsen yang lebih besar daripada massa gabungan tiap tingkatan konsumennya, biasanya terjadi pada ekosistem darat. 
2) Piramida Biomassa Terbalik; menggambarkan massa gabungan dari produsennya lebih kecil daripada massa gabungan tingkatan konsumen di atasnya, contohnya adalah pada ekosistem perairan.
Gambar piramida biomasa terbalik dan piramida biomasa tegak
Sumber : www.informazone.com

c. Piramida energi 

Piramida energi menggambarkan hubungan tiap organisme pada tingkatan trofik sesuai perpindahan energi yang dimulai dari produsen hingga konsumen puncak. Di dalam piramida energi, aliran energi yang diterima setiap kelompok trafik akan mengalami penurunan pada tiap kelompok trofik selanjutnya. Dengan demikian, tiap kelompok trofik akan membentuk semacam piramida dengan produsen sebagai penerima dan pemilik energi terbesar diikuti kelompok trofik berikutnya. 

Semakin berkurangnya aliran energi pada tiap kelompok trafik ini disebabkan oleh beberapa hal berikut: 
1) Tidak semua bagian makanan dapat dimakan dan dicerna, sehingga ada yang tersisa dan ada yang menjadi kotoran (residu). 
2) Hanya ada beberapa saja dari makanan yang dimanfaatkan oleh organisme pada tingkatan trofik berikutnya. 
3) Sebagian energi yang diperoleh dikonversi terlebih dahulu sebagai sumber energi untuk beraktivitas.
 

PRODUKTIFITAS EKOSISTEM

Energi dapat berubah menjadi bentuk lain, seperti energi kimia, energi mekanik, energi listrik, dan energi panas. Perubahan bentuk energi menjadi bentuk lain ini dinamakan transformasi energi. Sumber energi utama bagi kehidupan adalah cahaya matahari. Energi cahaya matahari masuk ke dalam komponen biotik melalui produsen (organisme fotoautotropik) yang diubah menjadi energi kimia tersimpan di dalam senyawa organik. Energi kimia mengalir dari produsen ke konsumen dari berbagai tingkat tropik melalui jalur rantai makanan. Energi kimia tersebut digunakan organisme untuk pertumbuhan dan perkembangan.Kemampuan organisme-organisme dalam ekosistem untuk menerima dan menyimpan energi dinamakan produktivitas ekosistem. 

Produktivitas ekosistem yaitu keseluruhan sistem yang dinyatakan dengan biomassa atau bioenergi dalam kurun waktu tertentu. Produktivitas ekosistem merupakan parameter pengukuran yang penting dalam penentuan aliran energi total melalui semua tingkat trofi dari suatu ekosistem. Produktivitas ekosistem terdiri dari produktivitas primer dan produktivitas sekunder.

a. Produktivitas primer 

Produktivitas primer adalah kecepatan organisme autotrop sebagai produsen mengubah energi cahaya matahari menjadi energi kimia dalam bentuk bahan organik. Hanya sebagian kecil energi cahaya yang dapat diserap oleh produsen. Produktivitas primer berbeda pada setiap ekosistem, yang terbesar ada pada ekosistem hutan hujan tropis dan ekosistem hutan bakau. 

Seluruh bahan organik yang dihasilkan dari proses fotosintesis pada organisme fotoautotrop disebut produktivitas primer kotor (PPK). Lebih kurang 20% dari PPK digunakan oleh organisme fotoautotrop untuk respirasi, tumbuh dan berkembang. Sisa PPK yang baru disimpan dikenal sebagai produktivitas primer bersih (PPB). Biomassa organisme autotrop (produsen) diperkirakan mencapai 50%-90% dari seluruh bahan organik hasil fotosintesis. Hal ini menunjukkan simpanan energi kimia yang dapat ditransfer ke trofik selanjutnya melalui hubungan makan dimakan dalam ekosistem. 

b. Produktivitas sekunder 

Produktivitas sekunder adalah kecepatan organisme heterotrop mengubah energi kimia dari bahan organik yang dimakan menjadi simpanan energi kimia baru di dalam tubuhnya. Energi kimia dalam bahan organik yang berpindah dari produsen ke organisme heterotrop (konsumen primer) dipergunakan untuk aktivitas hidup dan hanya sebagian yang dapat diubah menjadi energi kimia yang tersimpan di dalam tubuhnya sebagai produktivitas bersih. Demikian juga perpindahan energi ke konsumen sekunder dan tersier akan selalu menjadi berkurang. Perbandingan produktivitasbersih antara trofik dengan trofik-trofik di atasnya dinamakan efisiensi ekologi. Diperkirakan hanya sekitar 10% energi yang dapat ditransfer sebagai biomassa dari trofik sebelumnya ke trofik berikutnya. 

Dalam rantai makanan tidak semua energi dari satu tingkatan trofik ke tingkatan trofik berikutnya berpindah secara sempurna, selama perjalanannya energi terus berkurang karena hilang ke lingkungan selama perpindahan dari tumbuhan ke konsumen primer dan dari konsiumen primer ke konsumen sekunder dan seterusnya. Hilangnya energi tersebut karena digunakan untuk proses respirasi oleh semua tingkatan trofik di sekosistem.

Selain itu, kehilangan energi yang paling besar adalah antara tumbuhan dan konsumen primer (herbivora). Hal ini terjadi karena: 
1) tidak semua bagian tumbuhan dimakan oleh herbivora, misalnya jaringan batang dan akar. 
2) tidak semua bagian tumbuhan dicerna secara sempurna oleh herbivora, karena tidak bisa terserap sempurna oleh pencernakan. misalnya serat kasar. 
3) kehilangan energi sebagai panas selama dicerna di sistem pencernakan konsumen.